Synthesis of Highly Branched Polyolefins Using Phenyl Substituted -Diimine Ni(II) Catalysts

نویسندگان

  • Fuzhou Wang
  • Ryo Tanaka
  • Zhengguo Cai
  • Yuushou Nakayama
  • Takeshi Shiono
  • Shin-ichi Yusa
چکیده

A series of α-diimine Ni(II) complexes containing bulky phenyl groups, [ArN = C(Naphth)C = NAr]NiBr2 (Naphth: 1,8-naphthdiyl, Ar = 2,6-Me2-4-PhC6H2 (C1); Ar = 2,4-Me2-6-PhC6H2 (C2); Ar = 2-Me-4,6-Ph2C6H2 (C3); Ar = 4-Me-2,6-Ph2C6H2 (C4); Ar = 4-Me-2-PhC6H3 (C5); Ar = 2,4,6-Ph3C6H2 (C6)), were synthesized and characterized. Upon activation with either diethylaluminum chloride (Et2AlCl) or modified methylaluminoxane (MMAO), all Ni(II) complexes showed high activities in ethylene polymerization and produced highly branched amorphous polyethylene (up to 145 branches/1000 carbons). Interestingly, the sec-butyl branches were observed in polyethylene depending on polymerization temperature. Polymerization of 1-alkene (1-hexene, 1-octene, 1-decene and 1-hexadecene) with C1-MMAO at room temperature resulted in branched polyolefins with narrow Mw/Mn values (ca. 1.2), which suggested a living polymerization. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature and types of monomers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Synthesis of Branched Carboxylic Acid Functionalized Poly(1-octene) by -Diimine Palladium Catalysts

In this work, we studied propylene polymerization using some α-diimine palladium catalysts with systematically varied ligand sterics. In propylene polymerization, the ligand steric effect exhibits significant variations on the catalytic activity, polymer molecular weight, and branching density. However, the regio control for the polymer microstructure is poor. Furthermore, copolymerization of 1...

متن کامل

Dissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene

A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was u...

متن کامل

Coordination Copolymerization of Polar Vinyl Monomers H2C[double bond]CHX

Of all polymerization methods, catalytic polymerization offers the broadest scope of microstructure control. Stereoregularity, comonomer incorporation and sequences, molecular weights, and molecular weight distributions can be controlled by the catalyst structure. Polyolefins are produced on a vast scale of nearly 100 million tons annually, predominantly by catalytic polymerization. High-densit...

متن کامل

Importance of co-donor field strength in the preparation of tetradentate α-diimine nickel hydrosilylation catalysts.

Although bis(α-diimine)Ni complexes were prepared when amine-substituted chelates were added to Ni(COD)2, the incorporation of strong-field phosphine donors allowed the isolation of (κ(4)-N,N,P,P-DI)Ni hydrosilylation catalysts. The crystallographic investigation of two different (κ(4)-N,N,P,P-DI)Ni compounds revealed that the geometry about nickel influences the observed degree of α-diimine re...

متن کامل

Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes.

More than 70 million tons of polyethylene and polypropylene are produced annually. The majority is prepared by catalytic polymerization employing Ziegler or Phillips catalysts based on early transition metals. More recently, olefin polymerization by complexes of late transition metals has also received increasing attention. A major motivation is their higher tolerance towards polar reagents due...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016